A wavelet-based method for multiscale tomographic reconstruction

نویسندگان

  • Mickey Bhatia
  • W. Clem Karl
  • Alan S. Willsky
چکیده

The authors represent the standard ramp filter operator of the filtered-back-projection (FBP) reconstruction in different bases composed of Haar and Daubechies compactly supported wavelets. The resulting multiscale representation of the ramp-filter matrix operator is approximately diagonal. The accuracy of this diagonal approximation becomes better as wavelets with larger numbers of vanishing moments are used. This wavelet-based representation enables the authors to formulate a multiscale tomographic reconstruction technique in which the object is reconstructed at multiple scales or resolutions. A complete reconstruction is obtained by combining the reconstructions at different scales. The authors' multiscale reconstruction technique has the same computational complexity as the FBP reconstruction method. It differs from other multiscale reconstruction techniques in that (1) the object is defined through a one-dimensional multiscale transformation of the projection domain, and (2) the authors explicitly account for noise in the projection data by calculating maximum a posteriori probability (MAP) multiscale reconstruction estimates based on a chosen fractal prior on the multiscale object coefficients. The computational complexity of this maximum a posteriori probability (MAP) solution is also the same as that of the FBP reconstruction. This result is in contrast to commonly used methods of statistical regularization, which result in computationally intensive optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Natural Wavelet Bases and Multiscale Stochastic Models for Tomographic Reconstruction

We use a multiscale natural pixel type representation of an object, originally developed for incomplete data problems, to construct nearly orthonormal basis functions. The coefficients of expansion of an object in these basis functions are obtained as the 1-D wavelet transform of the (strip integral) projections of the object. This enables us to formulate a multiscale tomographic reconstruction...

متن کامل

Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images

Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...

متن کامل

Tomographic reconstruction using heuristic Monte Carlo methods

A tomographic reconstruction method based on Monte Carlo random searching guided by the information contained in the projections of radiographed objects is presented. In order to solve the optimization problem, a multiscale algorithm is proposed to reduce computation. The reconstruction is performed in a coarse-tofine multigrid scale that initializes each resolution level with the reconstructio...

متن کامل

Reconstruction of Data Gaps in Total-Ozone Records with a New Wavelet Technique

This study introduces a new technique to fill and reconstruct daily observational of Total Ozone records containing void data for some days based on the wavelet theory as a linear time-frequency transformation, which has been considered in various fields of science, especially in the earth and space physics and observational data processing related to the Earth and space sciences. The initial c...

متن کامل

Joint-MAP Tomographic Reconstruction with Patch Similarity Based Mixture Prior Model

Tomographic reconstruction from noisy projections do not yield adequate results. Mathematically, this tomographic reconstruction represents an ill-imposed problem due to information missing caused from the presence of noise. Maximum A Posteriori (MAP) or Bayesian reconstruction methods offer possibilities to improve the image quality as compared with analytical methods in particular by introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on medical imaging

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 1996